use {point, time_scope}; use common::Point; use super::{Grid, Level}; use noise::{NoiseFn, OpenSimplex, Seedable}; use rand::Rng; ////////// LEVEL GENERATOR ///////////////////////////////////////////////////// #[derive(Debug, Default)] pub struct LevelGenerator { pub seed: u32, pub iterations: u8, pub wall_smooth_radius: u8, } impl LevelGenerator { pub fn new(seed: u32) -> Self{ LevelGenerator { seed, iterations: 5, wall_smooth_radius: 2, } } pub fn generate(&self) -> Level { println!("new level from {:?}", self); time_scope!("level generation"); let cell_size = 20; let (width, height) = (2560 / cell_size, 1440 / cell_size); let mut grid = Grid { cell_size, width, height, cells: vec!(vec!(true; height); width), }; // start with some noise // self.simplex_noise(&mut grid); self.random_noise(&mut grid); // smooth with cellular automata self.smooth(&mut grid); // grid.smooth_until_equilibrium(&mut grid); // increase resolution for _i in 0..1 { grid = self.subdivide(&mut grid); self.smooth(&mut grid); // self.smooth_until_equilibrium(&mut grid); } self.filter_regions(&mut grid); let walls = self.find_walls(&grid); Level { gravity: point!(0.0, 0.1), grid, walls, } } #[allow(dead_code)] fn simplex_noise(&self, grid: &mut Grid) { let noise = OpenSimplex::new().set_seed(self.seed); self.set_each(grid, |x, y| noise.get([x as f64 / 12.0, y as f64 / 12.0]) > 0.055, 1); } #[allow(dead_code)] fn random_noise(&self, grid: &mut Grid) { let mut rng: rand::prelude::StdRng = rand::SeedableRng::seed_from_u64(self.seed as u64); let noise = OpenSimplex::new().set_seed(self.seed); self.set_each(grid, |_x, _y| rng.gen_range(0, 100) > (45 + (150.0 * noise.get([_x as f64 / 40.0, _y as f64 / 10.0])) as usize), 1); // more horizontal platforms // let w = self.width as f64; // self.set_each(|_x, _y| rng.gen_range(0, 100) > (45 + ((15 * _x) as f64 / w) as usize), 1); // opens up to the right } #[allow(dead_code)] fn smooth(&self, grid: &mut Grid) { let distance = 1; for _i in 0..self.iterations { let mut next = vec!(vec!(true; grid.height); grid.width); for x in distance..(grid.width - distance) { for y in distance..(grid.height - distance) { match self.neighbours(&grid.cells, x, y, distance) { n if n < 4 => next[x][y] = false, n if n > 4 => next[x][y] = true, _ => next[x][y] = grid.cells[x][y] } } } if grid.cells == next { break; // exit early } else { grid.cells = next; } } } #[allow(dead_code)] fn smooth_until_equilibrium(&self, grid: &mut Grid) { let distance = 1; let mut count = 0; loop { count += 1; let mut next = vec!(vec!(true; grid.height); grid.width); for x in distance..(grid.width - distance) { for y in distance..(grid.height - distance) { match self.neighbours(&grid.cells, x, y, distance) { n if n < 4 => next[x][y] = false, n if n > 4 => next[x][y] = true, _ => next[x][y] = grid.cells[x][y] }; } } if grid.cells == next { break; } else { grid.cells = next; } } println!(" {} iterations needed", count); } fn neighbours(&self, grid: &Vec>, px: usize, py: usize, distance: usize) -> u8 { let mut count = 0; for x in (px - distance)..=(px + distance) { for y in (py - distance)..=(py + distance) { if !(x == px && y == py) && grid[x][y] { count += 1; } } } count } fn set_each bool>(&self, grid: &mut Grid, mut func: F, walls: usize) { for x in walls..(grid.width - walls) { for y in walls..(grid.height - walls) { grid.cells[x][y] = func(x, y); } } } fn subdivide(&self, grid: &mut Grid) -> Grid { let (width, height) = (grid.width * 2, grid.height * 2); let mut cells = vec!(vec!(true; height); width); for x in 1..(width - 1) { for y in 1..(height - 1) { cells[x][y] = grid.cells[x / 2][y / 2]; } } Grid { cell_size: grid.cell_size / 2, width, height, cells } } fn find_regions(&self, grid: &Grid) -> Vec { time_scope!(" finding all regions"); let mut regions = vec!(); let mut marked = vec!(vec!(false; grid.height); grid.width); for x in 0..grid.width { for y in 0..grid.height { if !marked[x][y] { regions.push(self.get_region_at_point(grid, x, y, &mut marked)); } } } regions } fn get_region_at_point(&self, grid: &Grid, x: usize, y: usize, marked: &mut Vec>) -> Region { let value = grid.cells[x][y]; let mut cells = vec!(); let mut queue = vec!((x, y)); marked[x][y] = true; while let Some(p) = queue.pop() { cells.push(p); for i in &[(-1, 0), (1, 0), (0, -1), (0, 1)] { let ip = (p.0 as isize + i.0, p.1 as isize + i.1); if ip.0 >= 0 && ip.0 < grid.width as isize && ip.1 >= 0 && ip.1 < grid.height as isize { let up = (ip.0 as usize, ip.1 as usize); if grid.cells[up.0][up.1] == value && !marked[up.0][up.1] { marked[up.0][up.1] = true; queue.push(up); } } } } Region { value, cells } } fn delete_region(&self, grid: &mut Grid, region: &Region) { for c in ®ion.cells { grid.cells[c.0][c.1] = !region.value; } } fn filter_regions(&self, grid: &mut Grid) { let min_wall_size = 0.0015; println!(" grid size: ({}, {}) = {} cells", grid.width, grid.height, grid.width * grid.height); println!(" min wall size: {}", (grid.width * grid.height) as f64 * min_wall_size); // delete all smaller wall regions for r in self.find_regions(grid).iter().filter(|r| r.value) { let percent = r.cells.len() as f64 / (grid.width * grid.height) as f64; if percent < min_wall_size { // println!(" delete wall region of size {}", r.cells.len()); self.delete_region(grid, r); } } // delete all rooms but the largest let regions = self.find_regions(grid); // check again, because if a removed room contains a removed wall, the removed wall will become a room let mut rooms: Vec<&Region> = regions.iter().filter(|r| !r.value).collect(); rooms.sort_by_key(|r| r.cells.len()); rooms.reverse(); while rooms.len() > 1 { self.delete_region(grid, rooms.pop().unwrap()); } } fn find_walls(&self, grid: &Grid) -> Vec>> { let mut walls = vec!(); for r in self.find_regions(&grid) { if r.value { let mut outline = r.outline(grid.cell_size); for i in 2..(outline.len() - 2) { // outline[i] = (outline[i - 1] + outline[i] + outline[i + 1]) / 3; outline[i] = (outline[i - 2] + outline[i - 1] + outline[i] + outline[i + 1] + outline[i + 2]) / 5; } walls.push(outline); } } walls } } ////////// REGION ////////////////////////////////////////////////////////////// struct Region { value: bool, cells: Vec<(usize, usize)>, } impl Region { fn enclosing_rect(&self) -> (usize, usize, usize, usize) { let mut min = (usize::MAX, usize::MAX); let mut max = (0, 0); for c in &self.cells { if c.0 < min.0 { min.0 = c.0; } else if c.0 > max.0 { max.0 = c.0; } if c.1 < min.1 { min.1 = c.1; } else if c.1 > max.1 { max.1 = c.1; } } (min.0, min.1, 1 + max.0 - min.0, 1 + max.1 - min.1) } pub fn outline(&self, scale: usize) -> Vec> { let rect = self.enclosing_rect(); let (ox, oy, w, h) = rect; let grid = self.grid(&rect); let mut marked = vec!(vec!(false; h); w); let mut outline = vec!(); let mut directions = vec!((1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)); // 8 directions rotating right from starting direction right let start = self.find_first_point_of_outline(&rect, &grid); let mut p = start; marked[p.x as usize][p.y as usize] = true; loop { outline.push((p + (ox as isize, oy as isize)) * scale as isize); self.find_next_point_of_outline(&grid, &mut p, &mut directions); if p == start { break; } marked[p.x as usize][p.y as usize] = true; } outline } #[allow(dead_code)] fn print_grid(&self, grid: &Vec>) { let w = grid.len(); let h = grid[0].len(); let mut g = vec!(vec!(false; w); h); for x in 0..w { for y in 0..h { g[y][x] = grid[x][y]; } } println!("grid {} x {}", w, h); print!(" "); for n in 0..w { print!("{}", n % 10); } println!(); for (n, row) in g.iter().enumerate() { print!("{:>3}|", n); for col in row { print!("{}", if *col { "#" } else { " " }); } println!("|"); } } fn grid(&self, rect: &(usize, usize, usize, usize)) -> Vec> { let (x, y, w, h) = rect; let mut grid = vec!(vec!(false; *h); *w); for c in &self.cells { grid[c.0 - x][c.1 - y] = true; } grid } fn find_first_point_of_outline(&self, rect: &(usize, usize, usize, usize), grid: &Vec>) -> Point { let (ox, oy, w, h) = rect; let is_outer_wall = (ox, oy) == (&0, &0); // we know this is always the outer wall of the level for x in 0..*w { for y in 0..*h { if is_outer_wall && !grid[x][y] { return point!(x as isize, y as isize - 1); // one step back because we're not on a wall tile } else if !is_outer_wall && grid[x][y] { return point!(x as isize, y as isize); } } } panic!("no wall found!"); } fn find_next_point_of_outline(&self, grid: &Vec>, p: &mut Point, directions: &mut Vec<(isize, isize)>) { directions.rotate_left(2); loop { let d = directions[0]; if self.check(*p + d, grid) { *p += d; break; } directions.rotate_right(1); } } fn check(&self, p: Point, grid: &Vec>) -> bool { if p.x < 0 || p.x >= grid.len() as isize || p.y < 0 || p.y >= grid[0].len() as isize { false } else { grid[p.x as usize][p.y as usize] } } }